

AQA A-Level Physics 13.4 Operational amplifier Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

How can the gain of an operational amplifier be controlled?

How can the gain of an operational amplifier be controlled?

By negative feedback; if some of the output voltage is fed back to the inverting input then the voltage gain can be altered to a lower value.

How does the inverting amplifier make use of negative feedback?

How does the inverting amplifier make use of negative feedback?

It amplifies signals by a factor equal to the ratio of the feedback resistance to the resistance of the input resistor at the inverting input, the output is inverted:

$$A_{CL} = V_{out} / V_{in} = -R_f / R_{in}$$

D

PMTEducation

www.pmt.education

How is the closed loop gain given for a non-inverting amplifier?

How is the closed loop gain given for a non-inverting amplifier?

$$A_{CL} = V_{out} / V_{in} = 1 + (R_f / R_1)$$

Where R_f and R_1 are resistors that form a potential divider network in negative feedback.

State one use of operational amplifiers.

State one use of operational amplifiers.

They can be configured to add two or more voltages and to subtract one voltage from another.

State the equation used for summing amplifier configurations.

State the equation used for summing amplifier configurations.

$$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$$

Image: Collins

DOG PMTEducation

The Vs represent the 3 inputs to the inverting input and the Rs are the input resistors. R_f is the feedback resistor.

www.pmt.education

How is V_{out} for a difference amplifier configuration given?

How is V_{out} for a difference amplifier configuration given?

What is meant by virtual earth and virtual earth analysis?

What is meant by virtual earth and virtual earth analysis?

The input to the inverting input is a virtual earth as, although it isn't connected directly to 0V (earth), its value is very close. Virtual earth analysis is using a virtual earth (steady reference potential without being connected to a reference potential) to analyse a circuit.

Define the gain-bandwidth product.

Define the gain-bandwidth product

Gain x bandwidth = constant

Bandwidth means the range of frequencies for which the gain is uniform. Unit: Hz.

